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Abstract. The states of N two-level atoms can be mapped onto the eigenvectors of angular momentum
(with j = N/2) and this system in interaction with a radiation field constitutes a fundamental model
in Quantum Optics. There from one may construct “atomic” coherent states and “minimum uncertainty
packets”. The “squeezing” of such states is of considerable contemporary interest. We show that the
properties of squeezed atomic states are most elegantly and economically expressed in terms of “pseudo-
Hermitian” operators and through Wigner D-matrices and their analytical continuation.

PACS. 42.50.-p Quantum optics – 42.50.Dv Nonclassical states of the electromagnetic field, including
entangled photon states; quantum state engineering and measurements – 03.65.-w Quantum mechanics

1 Introduction

The Hamiltonian of an oscillator (or a mode of a field) is
given in suitable units byH = p2/2+x2/2 with [x, p] = i�.
Defining a = (x + ip)/

√
2� and a† = (x − ip)/

√
2�

one has [a, a†] = 1 and H = (a†a + 1/2)� and the un-
derlying Hilbert space is mapped by vectors |n〉, (n =
0, 1, 2, . . . ) such that a†a|n〉 = n|n〉 while a|n〉 =

√
n|n−1〉

and a†|n〉 =
√
n+ 1|n + 1〉. With α a complex num-

ber the “coherent” state for this system given by |α〉 =
exp(αa† − α∗a)|0〉 = exp(−|α|2/2)

∑
n(αn/

√
n!)|n〉 which

is an eigenvector of a belonging to the eigenvalue α and en-
joys the property that it is a minimum uncertainty packet
viz. ∆x∆p = �/2 as ∆x =

√〈x2〉 − 〈x〉2 =
√

�/2 and
∆p =

√〈p2〉 − 〈p〉2 =
√

�/2 for such a state. Another
useful concept is introduced through a dilation of x viz.
x→ x′ = eξx where ξ is a real number,and concomitantly
p → p′ = e−ξp keeping intact the canonical commuta-
tion relation [x′, p′] = i�. This results in a squeezing (or
reduction) in the spread or uncertainty in one of the vari-
ables at the cost, of course, in a corresponding increase
in that of the other, retaining the minimal value of the
product ∆x∆p. A little algebra reveals that at the level
of the annihilation (and creation) operators this dilation
entails a canonical Bogoluibov transformation viz. a → b
where b = (cosh ξ)a + (sinh ξ)a† which, furthermore, is
easily seen to be implemented via a unitary transforma-
tion viz. b = exp[(ξ/2)(a2 − a†2)]a exp[−(ξ/2)(a2 − a†2)].
The notions introduced above have played an important
role in Quantum Optics.

a e-mail: nayak@bose.res.in

The physics of a two-level atom is most conveniently
expressed in terms of the mathematics of the two states of
a spin one-half particle, and correspondingly a system ofN
such atoms is describable as the symmetric states of N
spin one-half particles viz. states pertaining to angular
momentum J with j = N/2 with the “magnetic” projec-
tion quantum numberm given by one-half the difference in
the number of atoms in the excited and ground states. The
interaction between radiation and a system of such atoms
attracts considerable attention being a fundamental model
in Quantum Optics. In particular much work has been
done to extend the notions of coherent states and squeez-
ing in the context of such systems of atoms (or equivalently
to the states of angular momentum). From the commu-
tation relations [Jx, Jy] = iJz for the components of the
angular momentum operator one readily derives the corre-
sponding uncertainty relation∆Jx∆Jy ≥ |〈Jz〉|/2. For the
state |j,m〉 the quantities ∆Jx and ∆Jy are easily found
to be both equal to

√
[j(j + 1) −m2]/2 and the uncer-

tainty inequality translates into [j(j + 1) −m2] ≥ |m|.
The inequality becomes an equality when m = +j or
m = −j, and these clearly would be the states of min-
imum uncertainty (for which ∆Jx = ∆Jy =

√
j/2 and

∆Jx∆Jy = j/2). It may be noted1 that for these special

1 With [Â, B̂] = iĈ the minimum uncertainty state |ψ〉 sat-

isfying ∆A∆B = |〈Ĉ〉|/2 are states for which (Â+ iλB̂)|ψ〉 =

(〈Â〉 + iλ〈B̂〉)|ψ〉 for some real λ. This is the condition under
which the Schwartz inequality (used to prove the uncertainty
relation from the commutator) reduces to an equality. Here

Â = Jx and B̂ = Jy and λ = ±1, while for the oscillator we
had Â = x̂ and B̂ = p̂ and λ = −1.
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states J±|j,m = ±j〉 = 0 where J± ≡ Jx ± iJy which
for this system are analogous to a and a† for oscillators.
However, there should be nothing particular about a given
z-direction. Accordingly a rotation should yield states ba-
sically equivalent to these minimum uncertainty vectors.
Such “atomic coherent states” were proposed by Bloch [1]
and subsequently by Radcliffe and others [2,3] and can be
defined as

|j, ζ〉 = NeζJ− |j,m = +j〉 = eζJ−−ζ∗J+ |j,m = +j〉

=
1

(1 + |ζ|2)j

2j∑

n=0

√
2jCnζ

n|j,m = j − n〉 (1a)

where N is a normalization constant and ζ a complex
number. Putting

ζ = tan(θ/2)eiφ (1b)

we have

〈j, ζ|Jz |j, ζ〉 = j cos θ, 〈j, ζ|Jx|j, ζ〉 = j sin θ cosφ,
〈j, ζ|Jy |j, ζ〉 = j sin θ sinφ (1c)

and thus we see that θ and φ are the polar and azimuthal
angles which the average angular momentum vector for
such a state (〈J〉 = 〈j, ζ|J|j, ζ〉) makes in the coordinate
system. For such a state one can easily verify that

∆Jx =

√
j

2

√

1 − sin2 θ cos2 φ, (2a)

∆Jy =

√
j

2

√

1 − sin2 θ sin2 φ, (2b)

∆Jz =

√
j

2
cos θ. (2c)

One must not, however, make the mistake that as ∆Jx <√
j/2 some squeezing has been introduced. The “atomic”

coherent state |j, ζ〉 is nothing but a rotated minimum un-
certainty state and clearly a mere change of axes cannot
introduce the quantum correlations involved in the act of
squeezing. Suppose we rotate the axes in such a manner
that the new z-axis (z′ say) is in the direction of the av-
erage angular momentum vector such that

〈Jz′〉 = |〈J〉| =
√
〈Jx〉2 + 〈Jy〉2 + 〈Jz〉2 (3a)

and, therefore, x′-, y′-plane lies in the plane orthogonal
to 〈J〉. Accordingly we have

〈Jx′〉 = 0 = 〈Jy′〉, (3b)

and thus with [Jx′ , Jy′ ] = iJz′ one must have ∆Jx′∆Jy′ ≥
|〈J〉|/2. The equality sign holds if the given state is a min-
imum uncertainty state. If in such a frame we have

∆Jx′ or ∆Jy′ <
√
|〈J〉|/2 (3c)

then we shall say that the atomic system is spin-squeezed.

A candidate for a squeezed atomic state which has
been considered by several authors and which is in princi-
ple realisable through some nonlinear interaction between
a system of effective two-level atoms and a suitable radi-
ation field is obtainable as eigenstates of the operator

Λ =
(
eξJ+ + e−ξJ−

)
/2 (4)

with ξ real. These states can describe a system of N two-
level atoms interacting with a squeezed radiation field [4]
(the so-called squeezed vacuum) with a parameter ξ called
the squeeze parameter2. We show that the handling of the
underlying mathematics is most suitably and efficiently
carried out through the introduction of pseudo-Hermitian
operators and employing the analytical continuation of the
Wigner D-matrices to imaginary angles.

2 Pseudo-Hermitian operators and squeezed
atomic states

The notion of pseudo-Hermitian operators has been known
since the early 1940’s through the works [5] of Dirac, Pauli,
Suraj Narayan Gupta, Bleuler, Sudarshan, Lee, and Wick.
The interest in such matters has more recently been re-
vived through a series of papers by Bender and his col-
laborators [6] on Hamiltonians which are invariant under
the combined operation (PT) of parity and time reversal
but separately violate P and T, but yet have real spectra.
It was subsequently shown by Mostafazadeh [7] that the
structure responsible for this feature is pseudo-Hermicity
viz. the existence of a linear invertible Hermitian opera-
tor η which is such that while H† �= H but yet H enjoys
the property thatH† = ηHη−1. Under such circumstances
either the spectrum of H is real or eigenvalues come in
complex conjugate pairs. Such an operator H is said to
be η-pseudo-Hermitian. The operator η entering the dis-
cussion is sometimes called a metric operator. This is be-
cause it may be used to define an inner product namely
〈ψ, φ〉η ≡ 〈ψ, ηφ〉 which is a genuine positive definite inner
product if and only if η is a positive definite operator. It
is also instructive to record that a pseudo-Hermitian op-
erator has a complete set of bi-orthonormal eigenvectors
{|ψn〉, |φn〉} with H |ψn〉 = En|ψn〉 and H†|φn〉 = E∗

n|φn〉
and 〈φm|ψn〉 = δm,n and

∑
n |ψn〉〈φn| = I. Further-

more, the necessary and sufficient condition for a pseudo-
Hermitian operator with a discrete complete set of bi-
orthonormal eigenstates to have only real eigenvalues is
that it should be possible to express the operator η as
OO† where O is an invertible linear operator.

2 It is the same parameter involved in the Bogoluibov trans-
formation of the radiation field operators a, a† described in
the first paragraph of this section. ξ represents the degree of
squeezing of the radiation field and is, therefore, called the
squeeze parameter. Further, the process of squeezing the vac-
uum produces a number known as the average photon num-
ber of the squeezed vacuum n̄ which is given by relation
n̄ = sinh2 ξ. The range of ξ is given by 0 ≤ ξ <∞. Obviously,
ξ = 0 represents the vacuum of the ordinary (un-squeezed)
radiation field.
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Let us now, in this framework, study the “squeezing”
operator given by equation (4). Noting the effect of a ro-
tation by an angle θ about the z-axis of the angular mo-
mentum operator Jx we have

e−iJzθJxe
+iJzθ = cos θJx + sin θJy

=
(
e−iθJ+ + e+iθJ−

)
/2 (5)

wherein putting θ = iξ we observe that

Λ = eξJzJxe
−ξJz

or, in other words, the operator Λ is nothing but a “hy-
perbolically” rotated Jx viz rotation through an imaginary
angle iξ about the z-axis. Thus Λ is a similarity (though
not a unitary) transform of the Hermitian operator Jx and
Λ† �= Λ. However,

Λ† =
(
eξJzJxe

−ξJz
)†

= e−ξJzJxe
ξJz = e−2ξJzΛe2ξJz (6)

and as such Λ is η-pseudo-Hermitian with η = exp(−2ξJz)
(recalling that Λ† = ηΛη−1). Furthermore η can be writ-
ten as η = OO† where O† = O = exp(−ξJz). Also, it
can be easily shown that the operator Λ has a complete
set of discrete bi-orthonormal eigenvectors {|ψm〉, |φm〉}
where |ψm〉 are the eigenvectors of Λ with eigenvalue m
and |φm〉 are the eigenvectors of Λ† with eigenvalue m.
Thus the spectrum of Λ is completely real as it satisfies
the relevant necessary and sufficient condition.

That Λ has real eigenvalues and these are given by
m = −j to + j integrally spaced values may be seen
from the following constructive procedure [8]. Consider
the Wigner state |j,m〉 which is an eigenstate of J2 and Jz

belonging to eigenvalues j(j + 1) and m respectively. Ro-
tate this state by the angle π/2 about the Y -axis. This
vector, viz. exp(−iJyπ/2)|j,m〉 will be an eigenstate of Jx

belonging to the eigenvalue m. Construct a state |ψm〉 by
operating on exp(−iJyπ/2)|j,m〉 by exp(ξJz) and insert-
ing a normalization constant (Nm) as exp(ξJz) not being
unitary does not preserve the norm. It is clear that |ψm〉
will be an eigenstate of Λ belonging to the eigenvaluem, as

Λ|ψm〉 = eξJzJxe
−ξJzNme

ξJze−iJyπ/2|j,m〉
= eξJzNmme

−iJyπ/2|j,m〉 = m|ψm〉. (7)

Recalling the definition of the reduced Wigner d-matrix,
corresponding to a rotation about the y-axis by an angle β,
we have

Ry(β)|j,m〉 =
∑

m′
dj

m′m(β)|j,m′〉 (8a)

where

dj
m′m(β) = 〈j,m′|Ry(β)|j,m〉 = 〈j,m′|e−iβJy |j,m〉

= (−1)m′−m
√

(j +m)!(j −m)!(j +m′)!(j −m′)!

×
∑

k

(−1)k(cos β
2 )2j−2k−m′+m(sin β

2 )2k+m′−m

k!(j −m′ − k)!(j +m− k)!(m′ −m+ k)!
, (8b)

we recognize that

|ψm〉 = Nme
ξJze−iJyπ/2|j,m〉

= Nme
ξJz

∑

m′
dj

m′m(π/2)|j,m′〉

= Nm

+j∑

m′=−j

eξm′
dj

m′m(π/2)|j,m′〉 (8c)

with the normalization constant given by

N−2
m =

+j∑

m′=−j

e2ξm′
dj

m′m(π/2)dj
m′m(π/2). (8d)

At first sight this looks rather irksome involving a double
sum as dj

m′m themselves are series [Eq. (8b)]. However, as
shown in the Appendix employing the Addition Theorem
and symmetry properties of the Wigner rotation matri-
ces [9] in this and subsequent steps all such double sums
may be avoided, and indeed to begin with the sum in
equation (8d) leads to

N−2
m = dj

mm(2iξ) ≡ ∆ (8e)

where ∆ can be obtained from equation (8b) and is the
analytic continuation of the reduced Wigner d-matrix el-
ement for imaginary angles and is given by

∆ = (j +m)!(j −m)!

×
∑

k

(cosh ξ)2j(tanh ξ)2k

(k!)2(j −m− k)!(j +m− k)!
. (9)

To investigate the properties of the squeezed state |ψm〉
using the techniques given above we need to find the rel-
evant averages, standard deviations and correlations in-
volving components of the angular momentum operator
which we now proceed to carry out. From the eigenvalue
equation itself [Eq. (7)], rewritten as

Λ|ψm〉 = (Jx cosh ξ + iJy sinh ξ)|ψm〉 = m|ψm〉 (10)

taking the scalar product with 〈ψm| and equating real and
imaginary parts one obtains right away the results

〈ψm|Jx|ψm〉 = m/ cosh ξ (11a)

and
〈ψm|Jy|ψm〉 = 0. (11b)

Taking the scalar product of equation (10) with its dual
equation viz. 〈ψm|Λ†Λ|ψm〉 = m2 one obtains

cosh2 ξ〈ψm|J2
x |ψm〉 + sinh2 ξ〈ψm|J2

y |ψm〉
− cosh ξ sinh ξ〈ψm|Jz|ψm〉 = m2. (12a)

Operating with Λ in equation (10) and considering the
resulting equation 〈ψm|Λ2|ψm〉 = m2 and equating real
and imaginary parts we have

cosh2 ξ〈ψm|J2
x |ψm〉 − sinh2 ξ〈ψm|J2

y |ψm〉 = m2 (12b)
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and
〈ψm|JxJy + JyJx|ψm〉 = 0. (12c)

The remaining correlators that we shall need are obtained
by operating with Jz in equation (10) and taking the scalar
product with 〈ψm| to get

〈ψm|Jz(Jx cosh ξ + iJy sinh ξ)|ψm〉 = m〈ψm|Jz|ψm〉
taking complex conjugate of which yields

〈ψm|(Jx cosh ξ − iJy sinh ξ)Jz|ψm〉 = m〈ψm|Jz|ψm〉
whence addition of the two yields

〈ψm|JxJz + JzJx|ψm〉 =
2m

cosh ξ
〈ψm|Jz|ψm〉

− 〈ψm|Jx|ψm〉 tanh ξ

=
2m

cosh ξ
〈ψm|Jz|ψm〉 − m sinh ξ

cosh2 ξ
(12d)

where in the last step we have used equation (11a) and
subtraction of the two yields

〈ψm|JyJz + JzJy|ψm〉 = 0.

The matrix elements that remain to be evaluated are
worked out in the Appendix and we have

〈ψm|Jz|ψm〉 =
1

2∆
d∆

dξ
(12e)

and

〈ψm|J2
z |ψm〉 =

1
4∆

d2∆

dξ2
(12f)

where ∆ is given by equation (9). Finally, equations (12a),
(12b) and (12e) together give

〈J2
x〉 =

m2

cosh2 ξ
+

tanh ξ
4∆

d∆

dξ
. (12g)

To find d2∆/dξ2 it is most convenient (as shown in the
Appendix) to use the differential equation satisfied by
Dj

m′m(α, β, γ) familiar from the quantum mechanics of the
symmetric top. This leads to

d2∆

dξ2
= 4j(j + 1)∆− 4

m2∆

cosh2 ξ
− 2 coth 2ξ

d∆

dξ

= 4j(j + 1)∆− 4
m2∆

cosh2 ξ
− Γ

cosh 2ξ
cosh2 ξ

(12h)

where in the last step, to avoid indetermine forms (as ξ →
0), we have used

d∆

dξ
= tanh ξ Γ (12i)

with
Γ = 2j∆+ 2

η

cosh2 ξ
(12j)

and

η = (cosh ξ)2j(j +m)!(j −m)!

×
∑

k

(tanh ξ)2k

(k + 1)!k!(j −m− 1 − k)!(j +m− 1 − k)!
.

(12k)

We notice that 〈JxJz +JzJx〉 = 0 for ξ = 0, thus, showing
that all the three correlators vanish in the case of a thermal
field acting on the spin system, as it should.

3 Spin squeezing

We are now in a position to study the squeezing charac-
teristics of the system represented by the wave function
|ψm〉. Before doing so, as explained by the equations (3),
we have to rotate in the xy-plane about the z-axis by an
angle φ to the x′y′-plane and, then, rotate the x′z-plane
about the y′-axis by an angle θ. This brings the z′-axis
along the mean angular momentum vector as represented
by the equation (3a). In the present case, since 〈Jy〉 = 0,
the angles are given by

tan θ =
〈Jx〉
〈Jz〉 , φ = 0

where we have used the equation (3a). Thus the spin com-
ponents in the two frames are related by

Jx′ = Jx cos θ − Jz sin θ (13a)
Jy′ = Jy (13b)

and
Jz′ = Jx sin θ + Jz cos θ (13c)

along with the mean spin vector given by equation (3a).
It is easy to get the variance in the y′ component from
equations (12a) and (12b) which is

(∆Jy′)2 =
〈
Jy′2

〉 − 〈Jy′〉2 =
〈
Jy′2

〉
=

〈Jz〉
2 tanh ξ

. (14)

We see that there is no correlation involved in the vari-
ance (∆J ′

y)2 and, indeed, there is no squeezing in the y′-
component which we show below. On the other hand, the
variance in the x′-component given by

(∆Jx′)2 = 〈J2
x〉 cos2 θ + 〈J2

z 〉 sin2 θ

− 〈JxJz + JzJx〉 sin θ cos θ (15a)

does involve quantum mechanical correlations. The aver-
ages appearing on the right-hand side of the above equa-
tions have been evaluated in equations (12a–12g). Substi-
tuting them, we get

(∆Jx′)2 =
[

m2

cosh2 ξ
+

tanh2 ξ

4

(
Γ

∆

)2]−1
[(

tanh2 ξ

4

)2

×
(
Γ

∆

)3

+
j(j + 1)m2

cosh2 ξ
− m2

4 cosh4 ξ

Γ

∆

]

− m2

cosh2 ξ
. (15b)
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We notice immediately that (∆Jx′)2 is symmetric about
m = 0 since Γ/∆ is symmetric [Eqs. (9, 12j, 12k)].

For m = ±j, the variances are

(∆Jx′)2 = (∆Jy′)2 =
j

2
, (16)

that is, they are independent of the squeeze parameter ξ
and the state is in a minimum uncertainty state. This is
identical to what happens with the Wigner states |j,±j〉.
However, for |m| < j, we find the state |ψm〉 is spin
squeezed. The degree of squeezing is a function of ξ and
it vanishes as ξ → 0. This is expected since ξ = 0 repre-
sents ordinary thermal field and it is well-known that ther-
mal fields cannot bring about squeezing. In such a situa-
tion, the variances (∆Jx′)2 and (∆Jy′)2 in equations (14)
and (15a) reduce to

(∆Jx′)2 = (∆Jy′)2 =
1
2

[
j(j + 1) −m2

]
(17)

as in the case of Wigner states |j,m〉 and again reduces
to a minimum uncertainty state at m = ±j. Thus, the
interesting regime of spin squeezing is |m| < j with ξ �= 0.

As per equation (3c), we define spin squeezing param-
eter in the y′ component [10]

Q =

√
2

|〈J〉| ∆Jy′ (18a)

and, hence, the condition for squeezing is Q < 1. Since,
〈Jy〉 = 0, we have

Q =
1√

tanh ξ

[ 〈Jz〉
√〈Jx〉2 + 〈Jz〉2

]1/2

(18b)

where we have used equation (14). For m = 0, we have
〈Jx〉 = 0 and, so, Q ≥ 1 showing that there is no squeez-
ing. Equation (18b) can be cast in the form

Q =

[
1

√
4m2∆2

Γ 2 cosh2 ξ
+ tanh2 ξ

]1/2

. (18c)

It is now easy to see that, for m �= 0, the denominator in
the expression for Q satisfies

4m2∆2

Γ 2 cosh2 ξ
+ tanh2 ξ ≤ 1.

Thus, we find that the noise in the y′-component cannot
be quenched. However, the x′-quadrature is squeezed as
we see below. We plot the spin squeezing parameter [10]

S =

√
2

|〈J〉| ∆Jx′ (19)

as a function of ξ in Figure 1. According to the definition
in equation (3c), S < 1 indicates squeezing. We notice
in Figure 1 that S starts from the value with ∆Jx′ for

0

1

2

3

4

5

0 0.5 1 1.5 2

’m=1’
’m=10’
’m=15’

’S=1’

Fig. 1. Variation of S as a function of the radiation field
squeeze parameter ξ. Note that S > 1 for ξ = 0. j = 20.

ξ = 0, as given in equation (17), and reaches a minimum
after crossing the line S = 1 as ξ increases. But, further
increase of ξ beyond this point makes S move upwards
and we notice S → 1 as ξ → ∞.

It may be noted here that, as mentioned earlier, the
rotation from the unprimed to the primed axes does not
bring any new correlations. Indeed, we notice

〈Jx′Jy′ + Jy′Jx′〉 = 0,
〈Jy′Jz′ + Jz′Jy′〉 = 0,

and

〈Jx′Jz′ + Jz′Jx′〉 =
m

cosh ξ
tanh ξ

[
Γ

∆
+

{
m2

cosh2 ξ

+
tanh2 ξ

4

(
Γ

∆

)2}−1{ (2 cosh2 ξ − 1)
4 cosh2 ξ

×
(Γ

∆

)2

− j(j + 1)
Γ

∆
+

m2

cosh2 ξ

}]

.

As expected, the above correlation goes to zero as ξ → 0.
It would not be out of place if we investigate whether

the uncertainty product

U =
2

|〈J〉| ∆Jx′∆Jy′ (20)

attains its minimum value in the range of ξ for which
S < 1. We notice that U → 1 as |〈J〉| → j. The state |ψm〉
has

|〈J〉| = 〈Jz′〉 =

[
m2

cosh2 ξ
+

tanh2 ξ

4

(
Γ

∆

)2
]1/2

(21)

where ∆ and Γ are given by equations (9) and (12j) re-
spectively. We notice that |〈J〉| = m for ξ = 0. As ξ is
increased, the first term under the square root in equa-
tion (21) approaches zero and, from equations (9), (12j),
and (12k), we find that Γ/∆ → 2j as ξ → ∞. Thus we
see that |〈J〉| = j for large ξ. These characteristics can be
easily noticed in Figure 2. We further notice in Figures 1
and 2 that |〈J〉| ∼= j about the value of ξ at which the
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Fig. 2. Change in mean spin vector |〈J〉| as a function of ξ.
j = 20.

curve for S goes below 1. It may have significance in the
definition of spectroscopic squeezing which we discuss in
the next section.

Figure 1 further indicates that the degree of squeez-
ing increases with decreasing m. However, the squeezing
depends on the difference j − |m|. Bigger this difference,
better is the squeezing. To understand why this is so, we
observe in equation (8c) that |ψm〉 has been generated
from the Wigner state |j,m〉. The state has correlations
among individual dipoles (spins) [11] which is proportional
to j2−m2 which is maximum at m = 0. It decreases as m
increases and reaches zero at m = ±j. These correlations
obviously reflect in the wave function of the atomic (spin)
system |ψm〉 and, thus, are at the root of spin squeezing.
This also explains the absence of squeezing for m = ±j
[Eq. (16)].

4 Conclusion

We have discussed the transfer of squeezing from the ra-
diation field in a squeezed vacuum state to a system of N
two-level atoms interacting with it. The interaction puts
the atoms in a state which are eigenstates of the pseudo-
Hermitian operator Λ [Eq. (6)] with real eigenvalues m.
We have shown that, for large ξ, the state |ψm〉 satisfies
U = 1 [Eq. (20)] with its x-quadrature spin squeezed. How
large ξ should be depends on m since the mean spin vector
|〈J〉| is a function of ξ and m [Eq. (21)].

The present study shows the importance of pseudo-
Hermitian operators in the present practical context. This
is due to the fact that quantum state transfer from
squeezed light to spin system is now experimental observ-
able [12]. Spin squeezing is a subject of vigorous stud-
ies [12–15] nowadays. Among these studies, Wineland and
others [13] preferred to present this squeezing slightly dif-
ferently and called it the spectroscopic squeezing and is
related to spin squeezing by

R =

√
j

|〈J〉| S. (22)

We see that R = S whenever the mean spin length
|〈J〉| = j. Otherwise, the system may not show spectro-
scopic squeezing even if S < 1. We give a comparison in
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Fig. 3. Comparison of spin squeezing S with spectroscopic
squeezing R. Both S and R are plotted as a function of ξ.
j = 20 and m = 1.

Figure 3 where we notice that the difference in R and S
are quite small in the present system.

It is a matter of choice between R and S depending
on which one is appropriate in a given experimental in-
vestigation. For example, in the atomic beam experiment
by Wineland and others [13], it was R which was of im-
portance there; whereas Kuzmich et al. [15] required spin
squeezing in their quantum nondemolition measurement.
The important fact to note here is that the eigenstates of
the pseudo-Hermitian operator Λ can be traced by using
the condition either S < 1 or R < 1.

Appendix

As is well-known the Wigner Dj matrices are the irre-
ducible representations of the rotation group and encode
the manner in which an angular momentum state |j,m〉
transform under a rotation R(α, β, γ) by the Eulerian an-
gles, viz.,

R(α, β, γ)|j,m〉 =
∑

m′
Dj

m′m(α, β, γ)|j,m′〉. (A.1)

Rotation about the y-axis by an angle β is given by the
reduced Wigner matrix [see Eq. (8a)] and

dj
m′m(β) = Dj

m′m(α = 0, β, γ = 0). (A.2)

For the evaluation of the summation contained in equa-
tion (8d) we shall need the addition formula [9] for dj

mm′
(which is a generalization of the more well-known spheri-
cal harmonic addition formula):

∑

m′
dj

mm′(β1)d
j
m′m′′(β2)e−im′φ =

e−imαdj
mm′′(β)e−im′′γ (A.3)

with α, β and γ given by

cotα = cosβ1 cotφ+ cotβ2
sinβ1

sinφ
, (A.3a)

cosβ = cosβ1 cosβ2 − sinβ1 sinβ2 cosφ, (A.3b)
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and
cot γ = cosβ2 cotφ+ cotβ1

sinβ2

sinφ
. (A.3c)

To make the summation occurring in equation (8d)
amenable to this application of the theorem we rewrite
it thus:

N−2
m =

∑

m′
e2ξm′

dj
m′m(π/2)dj

m′m(π/2)

=
∑

m′
e2ξm′

dj
mm′(−π/2)dj

m′m(π/2) (A.4)

where we have used the symmetry of the reduced Wigner
matrix dj

mm′(−β) = dj
m′m(β). Comparing equation (A.4)

with equation (A.3) we have φ = 2iξ, β1 = −π/2, β2 =
+π/2 and m′′ = m implying via equations (A.3a–A.3c)
that |α| = |γ| = π/2 and accordingly

N−2
m = dj

mm(2iξ)

which is equation (8e) of the text.
To handle the second derivative of the Wigner reduced

matrix occurring in the calculation of the expectation
value of J2

z in the squeezed state [see Eq. (12f)] we go back
to the differential equation satisfied by Dj

mm′(α, β, γ) fa-
miliar from the quantum mechanics of an anisotropic rotor

[

− 1
sinβ

∂

∂β
sinβ

∂

∂β
+
m2 − 2mm′ cosβ +m′2

sin2 β

]

×Dj
mm′(α, β, γ) = j(j + 1)Dj

mm′(α, β, γ).

Putting m′ = m and α = γ = 0 we obtain

d2

dβ2
dj

mm(β) = −j(j + 1)dj
mm(β) +m2 sec2(β/2) dj

mm(β)

− cotβ
d

dβ
dj

mm(β)

wherein putting β = 2iξ and using the definition of ∆
[Eq. (8e)] we obtain equation (12h).
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